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Abstract. The Ising model on a two-dimensional quasi-crystal (the Penrose tiling) is studied. 
Using the correlation inequality and the duality transformation, bounds for the critical 
temperature are obtained as 1.82 < T, < 7. Monte Carlo simulations on finite lattices give 
an estimate of T, = 2.41 k0.02. Finite-size scaling analysis of the Monte Carlo data shows 
that the system belongs to the same universality class as the Ising model on the two- 
dimensional Bravais lattices. However, the finite-size scaling forms do not reproduce the 
asymptotic limits in the range studied whereas, in the same range, the periodic lattices are 
known to behave as expected. 

1. Introduction 

The concept of universality classes in critical phenomena (Ma 1975) suggests that the 
class a model should belong to is not determined by the underlying translational 
symmetry, provided such a symmetry exists. The last clause, though not often explicitly 
stated, is necessary because new types of critical behaviour emerge when such sym- 
metries are destroyed as in lattices with randomness (McCoy and Wu 1972, Dotsenko 
and Dotsenko 1983). In this paper we study the critical behaviour of the Ising model 
on a two-dimensional quasi-lattice which is known not to have the usual Bravais lattice 
periodicity. 

The Ising model on any lattice is defined by the Hamiltonian 

where si, s, = i l  are the spins located at the vertices i, j of the lattice, J ( > O )  is the 
coupling constant and the sum is over the nearest neighbours only. I t  is well known 
(McCoy and Wu 1972) that, for any two-dimensional periodic lattice, the model exhibits 
a critical behaviour at a temperature T = T, with logarithmic divergence in the specific 
heat. The critical exponents$ are known to be exactly CY = 0, p = i, y = $ and v = 1. 
These exponents determine the universality class of the model. In contrast, an exact 
solution of a quenched random system with disorder in the coupling constant in (1.1) 
in one direction only (McCoy and Wu 1972) shows a much weaker singularity at a 
new T,. For a homogeneously disordered Ising model, Dotsenko and Dotsenko (1983) 

t Present address: AT&T Bell Laboratories, Murray Hill, NJ 07974, USA. 
$ The critical exponents a, p, y and v are defined by the relations ( i )  specific heat c - 
m - / f l p  ( f  < O), ( i i i )  susceptibility x - 
and t + O * .  

( i i )  magnetisation 
and ( i v )  the correlation length .$ - I t l -” ,  where f = ( T -  T c ) /  T, 
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found (Y = 0, p = 0, y = 2 and v = 1, with the specific heat diverging as I n / h  T - T,ll. 
In  this situation, it seems necessary to study other types of lattices that do not have a 
translational symmetry. Quasi-crystals (Penrose 1972, Gardner 1977) are an obvious 
choice. Moreover, since quasi-crystals can now be produced in the laboratory, it is 
necessary to know what type of critical behaviour is expected in such crystals. 

A quasi-crystal is a lattice which is not topologically equivalent to a periodic Bravais 
lattice. One can possibly associate some sort of quasi-periodicity? to such lattices (and 
hence the name). Such a lattice was first discovered by Penrose (1972) and that 
particular lattice, shown in figure l (a ) ,  will be called the Penrose tiling. This tiling 
has points with coordination number varying from 3 to 7. Its dual lattice, shown in 
figure l (b) ,  is a four-coordinated lattice, i.e. each point has four nearest neighbours. 
This is because the building blocks of the tiling are two rhombuses. Note that the 
dual lattice has a non-crystallographic pentagonal symmetry. In fact, the tiling of 
figure l ( a )  has been constructed from the dual lattice of figure l (b )  using the duality 
transformation (see de Bruijn (1981) and Socolar et a1 (1986) for details). 

[ a  I 

Figure 1. Penrose tiling ( a )  and its dual lattice ( b ) .  

I b l  

We have used both analytical and numerical methods for studying the critical 
behaviour of the Ising model on the Penrose tiling. Bounds on the critical temperature 
are obtained in 9 2. The Monte Carlo (MC)  method is used in 9 3 to obtain numerical 
values of the critical exponents. Section 4 is the summary and conclusion. 

2. Bounds on the transition temperature 

We shall assume the existence of a thermodynamic limit as the number of vertices of 
the tiling, N, goes to infinity. With this assumption, one can use Peierl’s argument to 
show the existence of an ordered state at sufficiently low temperatures. In this section 
we use correlation inequalities to obtain both upper and lower bounds for the transition 
temperature. 

+ A quasi-periodic function is the sum of periodic functions with incommensurate periods. 
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2.1. Upper bound on T, 

For the Ising model, in a magnetic field h, given by 

H = - J  1 sisj - h si 
ij I 

with J > 0 and h > 0, one can use one of the Griffiths-Kelly-Sherman inequalities 
(Griffiths 1972) to show that 

M s tanh p h  + q,M tanh PJ  (2.2) 

where M is the spontaneous magnetisation in the thermodynamic limit, defined as 

N being the number of lattice points, q ,  is the largest coordination number of the 
lattice and ,8 = l/k,T, kB being the Boltzmann constant. This is trivially true (since 
h > 0) if qm tanh PJ > 1. For q ,  tanh PJ < 1, (2.2) can be written as 

tanh p h  
(1 - q ,  tanh P J )  ' 

M s  (2.4) 

This shows that M + O+ as h + 0+, provided q, tanh p J  < 1. Hence 

qm tanh p J  = 1 ( 2 . 5 )  

gives a temperature T* above which M = 0 with h = 0. For a Penrose tiling q ,  = 7. 
Therefore, an upper bound for T, is obtained as 

(kBT,/Jj < (tanh-' q;')-' < qm = 7.  (2.6) 

2.2. Lower bound on T, 

The duality transformation for the ZD Ising model (Syozi 1972) connects the low- 
temperature partition function on a lattice to the high-temperature partition function 
on the dual lattice and vice versa. Using K for J /kBT,  this transformation, for large 
lattices, gives 

where N is the number of sites on the lattice, * represents the corresponding quantities 
on the dual lattice and ( K ,  K * j are connected by 

exp(2K*) = coth K .  (2.8) 
Therefore, if K ,  is the critical point for the tiling and K,* for the dual lattice in figure 
l ( b ) ,  they will be connected by (2.8). One can now use the inequality in (2.2) to show 
that 

1 / K z < 4  (2.9) 
because the grid lattice is a four-coordinated lattice?. One can, in fact, get a better 
bound by using self-avoiding walk results (Fisher 1967); the bound is 

(2.10) 1/ K,* < 2/ln 2 

t Note that (2.9) as an equality is the mean-field transition temperature (Stanley 1971) for the Ising model 
on the dual lattice. 
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which is, incidentally, the temperature given by the Bethe-Peierls approximation. 
Using (2.8), (2.10) can be written in terms of K as 

tanh K ,  s (2.11) 

so that 

k B T c / J  3 (tanh-’ 0.5)-’ = 1.82 . . . . (2.12) 

3. Monte Carlo calculation 

The standard importance-sampling Monte Carlo ( MC) technique (see, e.g., Binder 
1984) is used to calculate various statistical averages. In this algorithm, new spin 
configurations are generated by flipping the spins one at a time. Whether a spin will 
be flipped or not is determined by comparing the Boltzmann factor associated with 
the change in energy to a random number between 0 and 1. One MC step consists of 
one run through the whole lattice. An estimate of the statistical average of a quantity 
is then obtained by taking a simple average over the MC steps. 

The calculations are done, for obvious reasons, on small lattices. The averages 
calculated are (i) the magnetisation M = (ISl)/ N, where S = Z, s,, (ii) (S’), (5) (S4), 
(iv) the average total energy (E) and (v) (E’). The specific heat, c, and the susceptibility, 
x, are then obtained from the relations 

(3 . la )  c = ( k g T ’ ) - ’ N - ’ ( (  E * )  -(E)’) 

and 

x = ( k , T ) - ’ N - ’ ( ( S 2 )  - (q2). (3.lb) 

(S4) is used, as described below, to determine the critical temperature T,. Throughout 
this section and in the figures, the temperature is in units of J / k B .  

For each lattice size, lo5 steps are generated, of which the first 50 are not considered 
(‘equilibration’ time) and every tenth one is taken for evaluating the averages. The 
whole calculation is performed twice with different random numbers. The standard 
random number generator RANF, supplied with the FORTRAN compiler, is used in the 
calculation which is done on a Cyber computer. Lattices of different sizes are extracted 
from different parts of a master lattice containing about 11 000 points. 

3.1. Analysis of data 

The data obtained by the MC method are analysed by the finite-size scaling method 
(Barber 1983). This analysis is based on the assumption of the existence of a critical 
point in the thermodynamic limit. 

If a quantity G( T ) ,  in the thermodynamic limit, shows a critical behaviour of the 
type 

G (  T) = 9?+ltl-a (3.2) 

where t = ( T  - Tc)/ T, and if GL( T )  is the corresponding quantity for a finite system 
of linear dimension L, then finite-size scaling theory predicts 

(3.3) GL( T )  = L”’”fc( L””t )  
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with 

f G ( x )  %ex-‘ 

as x + CO. If G has a log divergence, i.e. if 

G (  T )  L- -3 In/?/  

as for the specific heat for ZD periodic Ising models, then 

GL( T )  -- %In L+ f C ( L ” ” t )  

with 

(3.4) 

(3.5) 

f G ( x )  = -3  In/x /  (3.7) 

as X + C O .  Asymptotic forms in (3.4) and (3.7) for large x is valid for systems with 
periodic boundary conditions. If there are free boundaries, one can still have such a 
scaling form but f G ( x )  will have a surface correction term (Landau 1976a, b). 

3.2. Determination of T, 

The critical temperature T, is determined by calculating the fourth cumulant (Binder 
1981) 

which is zero for a Gaussian distribution. U, has the finite-size scaling form 

U,( T )  = fu(L’/”t). (3.9) 

It is known (Binder 1981) that for a finite lattice 

UL(T)+J as T+O 

+o  as T + w  

= U* = f u ( 0 )  at T = T, (i.e. r = 0) (3.10) 

so that the ratio 

(3.11) 

as T-,  0, T + CO and T = T,. Therefore, a plot of RL,,( T )  as a function of T will give 
T, without any adjustable parameters. 

The results of our simulation are shown in figure 2 where 1 - RLIL2 ( L2 here refers 
to the smallest lattice of 96 vertices) is plotted against T. From these curves, we 
determine T, = 2.41 i 0.02 where the error is more of a measure of the spread than a 
rigorous statistica: error. 

3.2.1. Exponenr U .  From (3.9), it follows that plotting U, against L””? will give a 
universal curve for the right choice of U .  In the absence of a good measure of the 
linear size of the lattices, we take 

L = 
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T 

Figure 2. The critical temperature T, is obtained by plotting 1 - RL,,J T )  (3.1 1) against T. 
L 2 ,  for all the data points, stands for the smallest lattice with N =96 vertices. The four 
sets are for N = 228(x), N = 414(+), N =642(A) and N = 1232(0). Note that in this plot 
and in all the following figures, the temperature is in units of J /  k, .  

as the linear size. Figure 3 shows a scaling plot with Y = 1. We find a better collapse 
of data when i = ( T  - Tc)/ T is used instead of the usual t = ( T  - Tc)/ T, for reduced 
temperature. Note that, once T, is determined, this plot inyolves only one adjustable 
parameter, namely v. The plot is rather insensitive to small variations in T, and v 
because of the inherent error in the simulation. 

3.2.2. Exponents p and y. Figures 4 and 5 show the scaling plots for magnetisation 
M and susceptibility x. In figure 4,  ML”” is plotted against x = L’/’i ( i  = ( T - Tc)/ T )  
with p = and Y = 1. In figure 5 ,  XL-”” is plotted against x with y = and v = 1. In 
both cases, the good collapse of the data is an indication of the right choice of the 
exponents. The data can, as well, be fitted by slightly lower values of the exponents 
of p and ‘y, which, if necessary, can be used as a measure of the error for the exponents. 

The striking feature of these plots is the limiting behaviour. For large x, one can 
fit straight lines through these plots but the slopes do nor reproduce the values of p 

I I 

10 20 30 40 50 0 
x 

Figure 3. Scaling plot of the cumulant U, (3.8) against x = L”’i, where L = 0, i = 
( T- Tc)/ T and N is the number of vertices. For this plot, Y = 1 and T, = 2.41. The data 
points are for N =96(0) ,  N = 228( x), N = 414(+), N = 642(A) and N = 1232(0). 
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x 

Figure 4. Scaling plot of the magnetisation. MLP” is plotted against 1 with p =: and 
v = 1. The symbols are the same as in figure 3. The limiting slopes are 0.09 ( T <  T,) and 
0.77 ( T >  r,). 

and y as they should according to (3.4). (For T >  T,, the slope of the magnetisation 
curve should be 1 - p  (Landau 1976).) In contrast, for the square lattice Ising model, 
asymptotic slopes are observed in the same range of the variable. In view of this, no 
estimate for the amplitudes (i.e. the coefficients in (3.2)) can be obtained. 

In figure 6, x at T = 2.4 (= T,) is plotted against N (set a), the total number of 
vertices. This can be fitted to a straight line very well, giving an estimate of y = 1.73. 
This reiterates the form (3.3) with &(O) = 0.9 as estimated from figure 5 .  
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Figure 6. Plots of x (set a) and c (set b) at T = 2.4 ( - T,) against N. The log-log plot for 
,y can be fitted to a straight line giving an estimate of y = 1.73. The semilog plot of c can 
also be fitted to a straight line c = q0 log N + A with eo = 0.85 and A = -0.2. 

+ 
x 

0 0  
I O  X 

( I  ^ .  

0 

10-1 1 10 lo2 10-l 1 10 102 
X X 

Figure 7. Specific heat c is plotted against x = Lt where t = (T- Tc) /  7, with T, = 2.41, for 
( a )  TIT, and ( b )  T >  T,. The data points ( N = 9 6 ( 0 ) ,  N = 2 2 8 ( x ) ,  N=414(+) ,  N =  
642(A) and N = 1232(0)) for large x can be fitted to parallel lines (shown by the full 
lines) with slopes 4- = 0.5 ( T < T,) and 8, = 1.09 ( T  > T,). 

0.47 l b l  

04 

-2,0/- -1.6 ~ I I , , 
10 20 

X 
0 10 20 -30 -20 -10 0 -30 - 2 0  -10 

X 

Figure 8. Plots of c - % In L against x. ( a )  % = 8- In 10 and ( b )  V = go In 10. 
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3.2.3. Specific heat. Plots for specific heat are shown in figwes 7 and 8. In figure 7, 
c is plotted against x = Lt where, for large x, one can see parallel lines. For T < T,, 
in figure 7 (a )  the slope is @-= 1.09 whereas it is @ + = O S  for T >  T, (figure 7(b)). 
are the amplitudes in (3.5) when the logarithm is in base 10.) This is in contradiction 
to the scaling prediction of (3.7) because the scaling theory for the bulk predicts that 
the amplitude in (3.5) has to be the same on both sides of T, (Widom 1965). From 
(3.6), it follows that plots of c - V In L against x will be a universal one. Figure 8( a )  
shows these plots for %- = e- In 10. Good collapse is observed with K only for T < T, 
whereas with %+ = @+ In 10, it is observed only in the region T > T, (not shown). 

Figure 6 (set b )  shows the N dependence of c at T = 2.4 ( =  T,) and from the 
semilog plot we get a slope of gG=0.85 which, incidentally, is the mean of the two 
slopes in figure 7. In figure 8(b)  we plot c - Y G  In L against x ( Y o =  eG In 10). As 
expected, the collapse is not totally satisfactory. 

4. Discussions 

We have shown that the critical temperature for the k i n g  model on the Penrose tiling 
lies between 1.82 and 7. The mean-field transition temperature for the dual lattice of 
figure 1( b) is k,T, = 45 and  a naive estimate for the Penrose tiling would be k ,  T, = 
where 4 is the average coordination number for the tiling (also close to 4). Monte 
Carlo simulations give k,T,/J = 2.41 i0 .02.  From the duality transformation of (2.8), 
the transition temperature for the grid lattice is 1.07. 

Finite-size scaling analysis of the Monte Carlo data is consistent with the exponents 
a = 0, p = i, y = { and v = 1 which are the exponents for a pure translationally invariant 
ZD lattice. However, the scaling plots in figures 5 and 6 do not reproduce the asymptotic 
scaling forms of (3.4). That this is not an indication of a crossover to a new critical 
behaviour is checked by the behaviour right at T, as in figure 6. We have found similar 
behaviour on another non-Penrose quasi-crystal. We therefore tend to believe that 
this delay in the approach to the limiting behaviour is a characteristic of the quasi- 
crystals in general. We made no attempt to analyse the data in terms of surface effects 
and/or  corrections to scaling, because their contributions introduce curvature in the 
plots for large values of x. Scaling plots like figures 4 and 5 generally give estimates 
for amplitudes in the bulk (Landau 1976a, b)  but such predictions cannot be made 
for quasi-crystals. Why this is so remains unexplained. This behaviour is also reflected 
in the scaling plot of specific heat as shown in figures 8( a )  and ( 6 ) .  Figure 6 suggests 
that the bulk behaviour is like 

with V = 1.7. Even though the scaling plot in figure 8(b )  is not that impressive, one 
cannot rule out the possibility of a systematic size-dependent correction to the scaling 
plots since at least one exactly solvable case like that is known (Bhattacharjee and 
Nagle 1985). 

The conclusion is that the Ising model on a 2~ quasi-crystal belongs to the same 
universality class as the pure translationally invariant Ising model but significant 
differences exist in the finite-size scaling behaviour. 
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